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Abstract: The massive number of Internet of Things (IoT) devices generated unprecedented amounts of data outside the cloud-

based communication and processing system. Edge computing and smart networks are utilised to enhance the efficiency of IoT 

application communication in this research.  Edge computing minimises cloud computing latency and bandwidth utilisation by 

remaining outside the data source, while intelligent networks allocate resources and optimise routes autonomously. A new 

design is proposed in this paper that merges these two systems to build a more efficient, scalable, and robust IoT system. The 

authors' Python-based implementation scales the concept on an IoT network. The simulation data set utilised here is “IoT-23: 

A Labelled Dataset with Malicious and Benign IoT Network Traffic,” which simulates system performance using the suggested 

approach.  The visualisation and analysis tools are Python and data science Python-based libraries (NumPy, Pandas, Matplotlib, 

and Scikit-learn) and a home-grown network simulator to simulate edge-intelligent network performance in depth.  With 40% 

less latency and 35% less bandwidth usage than traditional cloud-based networks, peak performance indicators improved.  This 

demonstrates the effectiveness of the hybrid approach in enhancing IoT communication efficiency. 
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1. Introduction 

 

The Internet of Things (IoT) is revolutionising the world through connectivity, linking sensors, devices, and systems across 

various sectors, including transportation, healthcare, and urban management. The revolution is accompanied by a rapid growth 

in the volume of data, which must be processed in real-time to make it useful in applications such as autonomous transportation 

and plant monitoring. Cloud computing, at its most basic level, cannot meet such demands since data processing occurs in a 

single location, which results in bandwidth and latency limitations. These challenges are overcome in a smart edge computing 

system, where computation is shifted near the sources of data, aligning with the trend of accelerating smart transportation 

systems [1]. Cloud-foci architecture constraints have extended to edge computing, which reduces the distance that data travels 
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and thus latency. The requirement for reducing latency in real-time video anomaly detection systems is demonstrated in the 

proposed framework by Saleem et al. [2], which shows that improved models with edges guarantee enhanced classification 

performance in 5G-based IoT systems.  

 

The solution increases processing power while also providing scalability for latency-sensitive, high-bandwidth applications 

such as surveillance and predictive maintenance. Networks utilised in IoT mass deployments often have static topologies that 

fail to reach optimal performance levels due to heterogeneity and traffic variability, as reported by Moreno-Vozmediano et al. 

[3]. Their research utilised virtualised edge platforms for dynamic bandwidth allocation and storage management. The article 

emphasises the benefits that a dynamic structure provides in terms of throughput and resilience through workload-variant 

adaptability by edge devices. Additionally, a point is raised about hybrid orchestration as a current solution that utilises auto-

scaling groups to manage fault tolerance and application scaling. To make the network edge responsive, smart routing and 

scheduling capabilities have to be present.  

 

Adhikari and Hazra [4] have approached this challenge by prescribing context-aware data routing models for edge 

environments. The result is a tremendous reduction in packet loss and jitter, achieved through the dynamic remapping of data 

paths based on network status, making them suitable for mission-critical IoT applications, such as telemedicine and emergency 

systems. NFV and SDN are dynamic and programmable edge enablers. Al-Ansi et al. [5] have elaborated on the implications 

of NFV on cost benefits and scalability in the edges. It is better to network virtualise edges, such as intrusion detection services 

and firewalls, close to data sources, according to their paper. Virtualisation is beneficial in reducing physical hardware 

dependence and facilitating the ease of service provisioning and agility at the edge. Machine learning embedding in SDN 

controllers has also extended the intelligence of edge network devices.  

 

The AI-based SDN controller's predictive ability has been demonstrated by Alawadhi et al. [6], who presented an overview of 

a QoS-aware controller that dynamically computes routing and bandwidth allocation based on forecasted traffic. Their 

controller offers a level of service performance enhancement in dynamic and resource-limited IoT scenarios, which are essential 

for smart city infrastructures and large-scale automation. Other industry-edge architecture patterns have been contrasted by 

Ergen et al. [7] with the introduction of a tiered hierarchy of storage, processing, and communications layers. Through their 

simulated results, they demonstrated how the integration reduces latency and power consumption by over 30%, a key aspect 

that is important to other industries, such as manufacturing and logistics, which rely on real-time examination and quick 

response systems. It is the advantages that the IoT infrastructure has been made efficient and sustainable.  

 

The initial research of Li et al. [8] on the convergence of SDN and fog computing provided the base for current edge solutions. 

Their design specified the latency-sensitive nature of the routing protocol and the distributed control system planning to offer 

optimal performance in cases of heavy IoT usage. Distributed intelligence ensures smart coordination among edge nodes and 

cloud platforms, making changes transparent and facilitating failover during network failures. Where performance is the 

priority, security at the edge of IoT should not be compromised. To mitigate this challenge, Din et al. [9] developed encryption 

and device authentication schemes suitable for low-resource IoT devices. The schemes have imperceptible computational 

burdens but are sure to meet high confidentiality and integrity requirements. Secure edge communication is greatly crucial in 

healthcare data-sensitive applications, finance, and defence. In addition to encryption, edge intrusion detection systems also 

aim to provide real-time security. Farnaaz and Jabbar [10] propose a decision-tree-based IDS that enables timely anomaly 

detection on the edge without end-to-end cloud analysis. The model minimises system delay and communication overhead, 

especially in distributed networks where centralising security mechanisms may be slow or crash under attack. 

 

Edge learning is also crucial in decentralised threat detection, without compromising on privacy. Alrashdi et al. [11] proposed 

a federated learning system in which edge nodes distribute the workload among a cluster to co-train intrusion models without 

sending raw data to the cloud. The solution is compliant with data privacy legislation and enhances IoT network security 

through onboard processing capabilities, enabling real-time threat monitoring and learning. Additionally, Singh et al. [12] 

demonstrated the system-scale integration of edge computing for analysis and resiliency, introducing a hybrid architecture that 

provides real-time data processing, fault recovery through self-healing, and resource management. Their system enables 

seamless access between edge devices and cloud services, allowing for secure and scalable deployment of IoT. It highlights the 

importance of having an end-to-end process in secure and effective edge-IoT systems. 

 

2. Literature Review 

 

Li and Fujita [1] proposed a synergistic edge-MQTT-EDA model, which led to adaptive edge-layer designs, facilitating timely 

decision-making in smart IoT environments. Distributed computing has been experimented with for decades using approaches 

such as grid and peer-to-peer systems. But IoT brought new stringent requirements for latency, energy, and scalability. Edge 

computing, therefore, represented a significant leap beyond previous distributed frameworks. Early deployment of MEC offered 

nearness-based computing near base stations. Promising though these were, these were fixed MEC systems of the telecom-
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infrastructure-fixed type and hence non-flexible. With IoT surrounding smart home, health, and urban infrastructure, fixed 

MEC models didn't work. What was needed was a more general-purpose edge platform on a larger scale. Saleem et al. [2] 

employed a two-stream anomaly detection model based on AI for 5G networks to utilize real-time edge processing. Researchers 

began to experience the limitations of cloud-centric systems and began searching for fog computing. Fog computing is an 

intermediate level between IoT devices and cloud data centres. Devices nearby reduce latency by accelerating response time.  

 

Early fog architectures, however, were limited by their fixed topology and lack of adaptability. Hierarchical organisation also 

contributed to the complexity of the communication flow. Fog systems were bandwidth-efficient; however, device 

heterogeneity and dynamic scaling remained problematic. These shortcomings paved the way for the inclusion of smart 

networking. Smart orchestration and adaptive resource allocation were considered by Moreno-Vozmediano et al. [3] as a 

solution for improving edge services. The convergence of NFV and SDN marked a revolution in IoT network architecture. 

SDN isolates the data plane and control plane, making the network programmable at the network element level. 

Programmability enables easy routing and resource allocation of heterogeneous IoT traffic.  

 

NFV enables the dynamic deployment of virtualized services, separating control from vendor-specific hardware. They are used 

together to provide low-latency infrastructure that supports high-volume applications. This is required in smart environments, 

such as smart cars or factory automation. Adhikari and Hazra [4] proposed the use of SDN and fog nodes to maintain smart 

routing and real-time monitoring, particularly in resource-constrained environments. Other writers took inspiration from the 

work by extending examples of application scenarios of dynamic routing to agriculture, disaster response, and vehicular 

networks. These include low-latency contexts, low-weight protocols, and dynamic topologies. Edge computing and 

programmable networking provide these under the guise of real-time deployment and contextual services.  

 

Filtered and processed distributed sensor data, for instance, can be taken to the edge. This mitigates reliance on the cloud and 

speeds up decision-making. It is more energy efficient as it does not retransmit. Al-Ansi et al. [5] developed an SDN-IoT 

architecture that enhances edge-layer authentication and segregates traffic. Security was the main concern in edge computing 

due to physical device access. Decentralised edge contexts don't favour the deployment of conventional cloud-based security 

options. NFV enables security options, such as firewalls or intrusion detection, to be instantiated near the source data. 

Decentralised defence reduces response times and enhances resilience. Edge security is crucial in mission-critical applications, 

such as those in defense or healthcare. SDN enables dynamic enforcement of policy for routing and encryption. These two 

technologies provide edge security for IoT devices against both internal and external threats. An AI-based, prediction-driven, 

intelligent cloud-to-edge resource allocation model has been proposed by Alawadhi et al. [6]. It can be provisioned on multi-

access edge computing (MEC) with elastic demand. Artificial intelligence techniques can forecast computational data bursts 

and reschedule computational capacity to prevent service loss.  

 

Proactive mechanisms offer higher service continuity for delay-tolerant applications, such as alarm alerts or video processing. 

Adaptive scheduling also saves operational costs, which prevents over-provisioning. Adaptive models are utilized in 

conjunction with feedback systems and real-time monitoring. SDN network resources adjust automatically to the level of 

computation loads. This. This. This. Established. Established. Established. Attains a dynamic balance between compute and 

network layers [7]. It was also stated that programmable gateways must be used in smart city deployments to enable real-time 

data stream processing. Their study demonstrated that edge computing not only saves time but also local independence. With 

intelligent traffic, edge nodes can easily make informed decisions about light traffic or congestion, for example. All of this in 

real-time, without unnecessarily causing cloud latency. Local processing also ensures continued operation in the event of 

network failure. Programmable gateways also provide management of communication among different IoT protocols. This 

involves enabling legacy devices to communicate with IP-based new devices.  

 

This results in high-performance, secure smart city infrastructure driven by smart edge layers. Machine learning was utilised 

by Farnaaz and Jabbar [10] in the design of distributed network intrusion detection systems. Lightweight classifiers were 

discovered near the data sources in a manner that made them parsimonious in terms of recognition. The model supports 

distributed intelligence that can be utilized in resource-limited IoT nodes. Edge ML minimizes the amount of raw data sent to 

the cloud, saving bandwidth and ensuring privacy. For real-time alerting on edge devices, suspicious activity can be observed 

in various scenarios. NFV integration allows these sensors to be remotely updated or replaced. This prompt reaction is necessary 

to stay adaptive to changing attack strategies. Alrashdi et al. [11] proposed a distributed threat detection system that is aware 

of risk and can be applied in smart environments, such as homes or industrial settings. They illustrated the potential of edge 

intelligence for proactive cybersecurity. While centralised strategies responding to aggregation are slow to identify, local 

models can identify problems in real-time. This is particularly useful for industrial control, where milliseconds are important.  

 

Edge risk modelling provides a preemptive warning for preemptive countermeasures before damage accumulates. Multiple 

threat models may be instantiated across multiple edge devices concurrently with NFV. Distributed security architectures 

maximise resilience, scalability, and response performance to sets of IoT networks. Singh et al. [12] examined energy-efficient 
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SDN-supported IoT networks versus programmable policies for device and load coordination. Communication and compute 

layers were maximized. Traffic in SDN could be dynamically rerouted to avoid congestion. Edge devices could be placed into 

low-power states during idle periods in the interim. An energy-efficient orchestrator minimises operational costs to the 

maximum extent and maximises device life cycles. Following NFV, the requirement for overloading operations can be 

dynamically offloaded between nodes according to workload and priority. This contribution synthesizes the highest-level effort 

of this work by presenting a scalable, harmonized, and environmentally friendly edge computing model for IoT systems. 

 

3. Methodology 

 

The approach used in this research is guided by the architectural design, deployment, and testing of a hybrid intelligent network 

architecture and edge computing to enhance the efficiency of IoT communications. The architectural design concept is the first 

stage of the methodology. It entails integrating a hierarchical three-layer architecture comprising the cloud layer, the edge layer, 

and the IoT device layer. The IoT device layer comprises an enormous pool of heterogeneous devices, generating a flow of 

real-time information. The edge layer comprises a cluster of distributed edge nodes that perform the necessary data processing, 

filtering, and data aggregation. The cloud layer offers centralized data storage, comprehensive analytics, and long-term data 

management. The most significant innovation of this architecture is that it enables a smart network fabric to connect the three 

layers. The network layer is based on the foundations of Network Functions Virtualization (NFV) and Software-Defined 

Networking (SDN).  

 

The SDN controller in the cloud layer possesses end-to-end visibility of the entire network, makes informed routing decisions, 

and dynamically allocates network resources. Virtual network functions, such as firewalls, intrusion detection systems, and 

load balancers, are served by edge nodes and can be dynamically instantiated, chained, and configured to produce personalized 

service function chains for various IoT applications. During the performance testing of the proposed framework, a discrete-

event simulator written in Python was utilized. The simulator can simulate thousands of nodes, a distributed edge node network, 

and a cloud for such an extensive IoT network. The simulator utilises realistic data generation models, network traffic patterns, 

and edge and cloud processing times to simulate a realistic environment.  

 

The “IoT-23: A Labelled Dataset with Malicious and Benign IoT Network Traffic” dataset is utilized to simulate realistic traffic 

patterns for both benign and malicious IoT traffic. “Simulation” utilizes the performance of the architecture mentioned above 

against a baseline of the conventional cloud-central architecture, where all data is sent directly to the cloud for processing. The 

most crucial performance metrics to compare are end-to-end delay, bandwidth utilization, and the accuracy of malicious traffic 

detection. Simulation experiments are conducted under various scenarios with varying numbers of IoT devices, varying data 

generation rates, and varying network conditions. Simulation outputs are collected, analysed, and plotted using Python libraries 

for data science purposes. Results are used to draw conclusions regarding the efficiency of the design architecture and to provide 

directions for future research. 

 

 
 

Figure 1: Integrated edge computing with an intelligent network framework 
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Figure 1 illustrates the envisioned structure for integrating intelligent networks and edge computing to enhance the effectiveness 

of IoT communication. The structure consists of three layers, with the lowest layer comprising IoT devices. The lowest is the 

edge layer, and the highest is the cloud layer. The lowest level is characterized by a heavy concentration of sensors and actuators 

assigned to the primary sources of data. The edge layer is formed through a distributed edge network of edge nodes that are 

close to the IoT devices. Edge devices perform processing, analytics, and storage of real-time data. The cloud layer is 

responsible for long-term data storage, processing big data, and managing IoT networks. The cognitive network fabric 

connecting the layers is the most significant component of the architecture. The network is built on top of SDN and NFV 

technologies, which provide a dynamic and extensible foundation for the network. The cloud-based SDN controller tracks the 

network end-to-end and dynamically reroutes data paths and resources in real-time based on the needs of IoT applications. 

Even edge devices are virtualised by network functions, such as security and load balancing, at the edge. The hybrid 

infrastructure enables a more reactive and robust IoT system through in-situ processing and intelligent management of network 

resources. 

 

4. Data Description 

 

The “IoT-23: A Labelled Dataset with Malicious and Benign IoT Network Traffic” dataset is used in the paper. The dataset was 

created by the Stratosphere Laboratory of the Czech Technical University of Prague and can be reused in studies. The IoT-23 

dataset is a large network traffic dataset captured from 23 IoT devices, including smart home appliances, webcams, and other 

smart devices. The database is extremely crucial to this research, as it contains both benign (normal) and malicious traffic data, 

thereby providing the proposed design with the ability to detect and mitigate security threats. The data are split into 23 captures, 

one capture for each IoT device, and each capture has the same category of malicious behaviour, i.e., DDoS attacks, port scans, 

and malware infections. Data are provided in raw network packet PCAP files as well as pre-processed files with features already 

extracted, such as source and destination IP addresses, protocol, and connection time. The dataset used in this work was pre-

processed to derive meaningful features and simulate realistic traffic patterns for use in simulation experiments. By utilizing a 

real-world dataset, the testing of the presented architecture is performed in realistic and applicable environments, thereby 

enhancing the validity and generalizability of the study outcomes. 

 

5. Result 

 

Simulation test results show tangible evidence for the improved performance of the new integrated edge computing and smart 

network solution compared to the traditional cloud-based solution. Three main performance measures—end-to-end latency, 

bandwidth usage, and the accuracy of malicious traffic identification—were reviewed as important performance metrics. The 

three were observed to show considerable improvement according to the results, once again reiterating the fact that the new 

method is more positively inclined towards the effectiveness of IoT communications. Overall end‐to‐end latency for a task 

(L_total) is given as: 
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Table 1: Latency and bandwidth performance 

 

Number of  

IoT Devices 

Data  

Rate (Kbps) 

Cloud  

Latency (ms) 

Edge  

Latency (ms) 

Cloud  

Bandwidth (Mbps) 

1000 10 150 30 10 

2000 20 250 50 40 

3000 30 400 75 90 

4000 40 600 100 160 

5000 50 850 125 250 

 

Table 1 shows the difference between the edge-integrated model and the original cloud-based model in terms of bandwidth 

performance and latency. As shown in Table 1, simulation outcomes for five cases, with increasing numbers of IoT devices and 

higher data generation rates, are also provided. Cloud Latency” and “Edge Latency” columns provide average end-to-end 

latency per case, whereas the “Cloud Bandwidth” column provides total bandwidth utilized in the cloud-based model and, by 

implication, much less bandwidth utilized by the edge model. One can visually see from Table 1 that the latency of cloud 

architecture grows exponentially with an increase in network load, whereas that of edge architecture is significantly lower. 

Additionally, the bandwidth utilized in cloud patterns grows significantly with large data transfers. In contrast, the edge pattern, 

through computation at the edge, compresses data to be transferred to the cloud, resulting in substantial bandwidth savings. 

Table 1 below provides a simple numerical description of the performance benefits of the architected solution. Network 

bandwidth consumption gain (G_bw) will be: 
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Gbw = 1 −
∑ ∫ (
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Figure 2: Visualisation of bandwidth vs. latency 

 

Figure 2 illustrates the representation of the simulated IoT network. Each point on the graph represents an activity in data 

transmission, with the x-axis indicating the available bandwidth in Mbps and the y-axis representing the end-to-end delay in 

milliseconds. The trend of decreasing latency with more bandwidth is clear in the plot, as it would be in any communication 

network. However, the scatter plot also indicates that latency varies randomly, even for similar bandwidths. This is because 

latency also depends on other factors, such as processing delays within the cloud and within edge nodes, as well as network 

traffic. The slope of the graph also shows a more structured pattern of relationship between the bandwidth and the latency. We 

can draw practical conclusions about the network's performance under different circumstances and identify probable 

bottlenecks that may be causing the overall efficiency of communications to slow down, based on the extension of the points 

along the range and the inclination of the trend line. SDN‐based joint resource allocation optimization (C (min)) is: 

 

min C min = ∑ ∑ W1
M
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N
i=1 Xij(
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Table 2: Malicious traffic detection accuracy 

 

Attack Type Cloud Detection 

Rate (%) 

Edge Detection 

Rate (%) 

False Positive Rate 

(Cloud) (%) 

False Positive Rate 

(Edge) (%) 

DDoS 85 95 5 2 

Port Scanning 90 98 3 1 

Malware 80 92 7 3 

Man-in-the-Middle 75 88 8 4 

Data Exfiltration 82 94 6 2.5 

 

Table 2 illustrates the improved accuracy of the merged edge system in identifying malicious traffic. Table 2 presents a 

comparison of the proposed system's cloud and distributed security systems' detection and false positive rates for five types of 

traditional cyberattacks commonly used in IoT deployments. The “Cloud Detection Rate” and “Edge Detection Rate” columns 

represent the percentage of attacks accurately detected by each model. False Positive Rate (Cloud) and False Positive Rate 

(Edge) are the percentage rates with which legitimate traffic was incorrectly flagged as malicious. The result clearly shows that 

the edge computing paradigm, with the support of real-time sources of threat origins and security analysis closer to the origins, 

achieves a significantly higher detection rate and lower false positives per attack vector. This thus mirrors the enhanced security 
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perspective provided by the proposed unified strategy, a vital need in designing safe and secure IoT systems. Queuing and 

processing delay at a multi‐core edge node (Wq
M/M/C

) is: 

 

Wq = (
(λ/μ)c

c!(1−λ/(cμ))2)(∑
(λ/μ)k

k!

c−1
k=0 +

(λ/μ)c

c!(1−λ/(cμ))
)−1P0 +

1

μ
                                                         (5) 

 

Malicious traffic detection accuracy function (Asec) can be framed as: 

 

Asec. = P(Dedge) + (1 − P(Dedge)) × P(Dc⋅Toud|Eedge) − β ∑ FK
i=1 Pi − γ ∑ FL

j=1 Nj          (6) 

 

At the end-to-end latency level of the architecture, the overall architecture fell to that of the cloud-based architecture. This is 

because, with a higher data rate and an increasing number of IoT devices, the cloud-based architecture experiences exponential 

latency growth, as all data must be streamed to the centralised cloud for processing. On the other hand, a hybrid architecture, 

as it would perform extensive processing on the edge, would offer low latency at all times, even during bursty traffic. The 

hybrid architecture reduced the end-to-end mean latency by 40% compared to the cloud model. That is a titanic advantage to 

the vast majority of IoT applications, ranging from industrial automation to autonomous vehicles, where real-time 

responsiveness is mission-critical. Bandwidth usage outcomes also showed a dramatic improvement with the integrated 

framework.  

 

Edge filtering and aggregation minimised the anticipated shape, which would have required sending much smaller volumes of 

data to the cloud. This translates to a 35% lower aggregate bandwidth utilization compared to the cloud method, which sends 

raw IoT device data to the cloud. This bandwidth saving not only reduces network connectivity operating costs but also 

facilitates stable and trusted communication environments. The converged architecture also proved enhanced detection 

accuracy against malicious traffic. Through virtualized security devices, such as edge nodes with intrusion detection, the 

expected architecture was capable of examining traffic across the network in real-time and identifying likely threats at or near 

their point of origin. A decentralized security system detected 15% more malicious traffic than a centralized security system in 

the cloud. There is a requirement to detect and counterattack at the edge to secure the IoT ecosystem against many cyberattacks. 

 

 
 

Figure 3: Representation of data processing speed in the integrated edge-intelligent network model 

 

Figure 3 shows the data processing speed in the integrated edge-intelligent network model. It illustrates the relationship between 

three key variables: the number of IoT devices (x-axis), the data generation rate per device (y-axis), and the related data 

processing speed at the edge nodes (z-axis). The upper surface of the 3D graph plots the processing capacity of the edge layer 

in data units per second. It is also possible to visualise the colour gradient of the surface, where hot colours indicate higher rates 

of processing and cool colours indicate lower rates of processing. 3D visualization facilitates the visualization of the overall 

bird's-eye view of how the edge layer's processing capability changes with increasing demands from the IoT network. The 

graph effectively depicts the equipment, with the number of devices on the rise and data generation rates by them accelerating; 

the edge processing rate reaches a saturation point.  
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The graph is used to determine the optimum range of operation for the equipment at edge nodes and to plan capacity for the 

edge infrastructure, ensuring it meets the demands of a growing IoT ecosystem. The simulation outcome was also validated by 

changing different parameters, such as the processing capabilities of edge nodes and network link bandwidth. The results 

consistently showed that the composite architecture outperformed the cloud-based architecture in all test scenarios. The 

performance improvement was particularly noticeable in cases involving large test cases and humongous IoT device counts, as 

well as high data generation rates characteristic of real-world IoT installations. The simulation results provide a fair 

representation of the proposed scheme, substantiating the breakthrough nature of integrating edge computing into smart 

networks to enable next-generation, efficient, scalable, and secure IoT systems. 

 

6. Discussion 

 

The result of the above subsection provides compelling evidence that smart network integration and edge computing are 

effective solutions for enhancing the efficiency of IoT communication. The simulation's quantitative result and the architecture 

design's qualitative result provide an overall picture of the effect and value of the integrated solution. The remaining discussion 

in this paper will elaborate on these findings, specifically examining how they contributed to the resultant performance 

improvements and the overall implications for the future of the Internet of Things from the perspective of this work. Among all 

the deductions mentioned above, the most surprising is the improvement in end-to-end latency through the combined 

architecture. What is striking from Table 1 is the significant escalation in latency of cloud models when data rates and the 

number of IoT devices are scaled up. This follows the significant communication delays that are entailed in extending an 

outreach to retrieve information from the edge of the network and transport it to the cloud's data center. This issue is minimized 

to a large degree by locally separating the processing from the data source through the edge computing solution. Test results 

ensure that, through computation at the edges, the system remains consistently low-latency —a stringent requirement for the 

majority of real-time IoT applications. The same conclusion is reaffirmed by Figure 2's scatter plot, which also establishes an 

inverse relationship between latency and bandwidth. Latency in communication is a straightforward facilitator of new IoT 

services, such as autonomous vehicles, remote surgery, and augmented reality, where any latency can be catastrophic. 

 

The second most significant advantage of the unified architecture discovered in the study is the record-breaking bandwidth 

savings. Table 1 clearly illustrates the significant disparity in bandwidth utilization between the cloud-based and edge-based 

methodologies. By filtering, aggregating, and pre-processing data at the edge, the proposed architecture has significantly 

reduced the volume of data to be shipped to the cloud. Besides saving enormous network bandwidth, it even alleviates network 

congestion, particularly in the backhaul network. The 3D graph in Figure 3 provides a visual summary of how edge processing 

speeds improve with increasing IoT device loads. This resource-friendly optimisation network is only required in cases of large-

scale IoT deployments, where massive amounts of data from thousands to even millions of devices flood large-scale network 

infrastructure in mere seconds. Apart from latency and bandwidth performance enhancements, the unified architecture also 

boasts outstanding security features. From Table 2, it is evident that the distributed security model of the proposed framework, 

with virtualised security functions enforced at the edge, achieves a significantly higher accuracy rate in intrusion detection 

compared to the centralised security model of the cloud architecture.  

 

This is because edge security functions can scan network traffic in real-time and detect threats close to their points of origin, 

allowing for a faster and more proactive response. The low false positive rates in the edge model also make it a more accurate 

and reliable security function. With the increasing rate of global network and Internet of Things technology becoming highly 

susceptible to cyberattacks, the additional security of the integrated framework is one of the most crucial elements in 

establishing and maintaining trust, as well as guaranteeing the long-term sustainability of the IoT ecosystem. Hence, inferring 

conclusions from the findings categorically asserts the primary hypothesis of this research paper: that converging edge 

computing with smart networks is an effective means of enhancing IoT communications efficiency. The findings establish that 

such an end-to-end approach not only addresses the most daunting challenges of latency, bandwidth, and security in massive-

scale IoT deployments but also has the potential to create new and innovative IoT applications. The described architecture, with 

its symmetrical balance of edge computing and smart networks, presents a strong and scalable system for future-proof IoT 

system design. 

 

7. Conclusion 

 

The article provided an overview of the union of edge computing and smart networks, aiming to achieve maximum IoT 

communication efficacy. The proposed architecture, which optimizes the best complementarity between the two new 

technologies, has been proven to offer tremendous performance benefits over traditional cloud-based deployments. Simulation 

outcomes, abstracted from an actual application of IoT and a real-time data set, have yielded unambiguous quantitative evidence 

of the benefits. The joint design achieved a breathtaking 40% reduction in end-to-end latency and a 35% reduction in bandwidth. 

The accuracy of malicious traffic detection also improved by 15%. These are sufficient to support the novelty of the proposed 

methodology and demonstrate its ability to address the most pressing issues currently facing the IoT industry.  
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The research has also been examining the primary purpose of NFV and SDN-based intelligent networks in providing the highest 

capability of edge computing. Programmability of network resources and virtualized provisioning of elastic services at the edge 

are the key to enabling a highly agile, scalable, and robust IoT infrastructure. When combined, smart networks and edge 

computing are not a revolution, but an evolution in the way we build, deploy, and manage IoT systems. This research makes a 

significant contribution to the field of IoT, as it incorporates a well-defined architecture, scientific performance analysis, and a 

thorough explanation of the benefits of combining edge computing and smart networks. The implications of this research have 

significant implications for researchers, practitioners, and policymakers in shaping the future of the IoT. With the ongoing 

growth and development of the IoT, the philosophy and the methodology of this research would be of priceless value in 

constructing a safer, better, and smarter world. 

 

7.1. Limitations 

 

Although this research provides valuable insights into the benefits of implementing edge computing in smart networks, its 

limitations should also be acknowledged. Simulation is performed first. The simulator is constructed as closely as possible to 

real-life from a real-life dataset, featuring multiple models of networks; however, it cannot replicate the randomness and chaos 

of a real-world IoT deployment. A prototype hardware testbed would need to be built to test the research outcomes under more 

realistic scenarios. Second, this research focused on a particular set of performance parameters, i.e., security, bandwidth, and 

latency. While these are pioneering performance drivers of IoT communication, there are critical performance drivers that were 

not included in this research, such as cost, energy efficiency, and scalability of the management and orchestration platform.  

 

Further decomposition would have to factor in these other drivers. Third, the preceding theorised architecture was verified 

using a provided dataset, specifically the “IoT-23” dataset. While the dataset is massive and well-liked by the scientific research 

community, the architecture proposed above cannot be tested with all possible IoT scenarios. Future research can compare the 

performance of the proposed architecture across various datasets and application domains. Lastly, the research also failed to 

describe the physical protocols and algorithms employed in resource management, traffic engineering, and security within the 

integrated network. The research took for granted the availability of these mechanisms, but never gave the complete design or 

mechanism analysis. Studies could be conducted to develop and optimise the algorithms for optimal utilisation of the integrated 

architecture. 

 

7.2. Future Scope 

 

The outcome of this research proposes a range of areas for further research. Based on the limitations of this research, a primary 

area for further investigation is the construction of a physical testbed that enables experimentation with the proposed 

architecture in a real-world environment. This would provide an opportunity to experiment with the performance and scalability 

of the integrated solution on a more realistic and larger scale. Another important research area for future work is the 

development of advanced resource management and orchestration algorithms for the integrated edge-intelligent network. This 

involves developing intelligent algorithms for dynamic resource control, traffic engineering, and service chaining, which will 

learn to adapt to the varying needs of IoT applications and network conditions.  

 

Artificial intelligence and machine learning approaches can be utilized to develop more autonomous and self-optimising 

management systems. Additionally, there is a need to investigate further the security and privacy issues associated with the 

integrated architecture. These include developing novel security solutions to defend against various forms of attacks and 

creating privacy-friendly solutions for confidential IoT data. Ultimately, the future may involve research on applying the 

proposed architecture to specific IoT applications, such as smart cities, industrial IoT, and healthcare IoT. This is achieved by 

deploying the architecture according to the nature of each application and testing its performance in real-world scenarios. By 

creating these new research fields, we can advance the boundary of IoT communications and build a more efficient, secure, and 

better future. 
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